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SUMMARY

The partial differential equation for the perturbation velocity
potential is examined for free—stream Mach numbers close to and equal
to one. It is found that, under the assumptions of linearized theory,
solutions can be found consistent with the theory for lifting-—surface
problems both in stationary three—dimensional flow and in unsteady
two—dimensional flow. Several examples are solved including a three—
dimensional swept-back wing and a two-dimensional harmonically
osclllating wing, both for a free—stream Mach number equal to one.

INTRODUCTTON

Much of the recent progress in the theoretical analysis of
compressible—flow fields is attributable to the successful applica—
tion of linearization methods. Although the basic assumptions uged
1n conventional linearized theory appear at first glance to be highly
restrictive, it has been found that, Jjust as in the analogous case of
thin—eirfoll theory for incompressible flow, the methods have many
fields of utilization adequate for most engineering purposes. Since
the basic methods are so well known and depend on such relatively
simple mathematical tools, it appears obvious that the range of
appllicability of the theory should be explored completely. Such is
the purpose of the present report. It has been more or less tacltly
presumed in the past that such applications cannot treat cases for
which the flight velocity is near the speed of sound. In the study
of two—dimensional steady—state problems in airfoil theory, this
presumption is certainly true. The Prandtl-Glauert and Ackeret rules
for variation of pressure coefficient with free—stream Mach number
in the subsonic and supersonic regimes, respectively, are clearly
invalid for Mach numbers near one, since perturbation velocities
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become arbitrarily large. In this case, linearized theory therefore
predicts its ingbility to treat such problems. On the other hand,
if linear methods are applied to nonstationery two—-dimensional
airfoil and particular steady—state, three—dimensional, lifting-
surface problems at sonic speeds, a consistent theory results since
solutions are found which yleld perturbation velocities of the same
order of magnitude as those calculated for free—stream Mach numbers
of, say, 0.6 or 1.5.

Unfortunately, arbitrary thickness distributions at sonlic speeds
cannot be studied by linear theory in the steady state since, in
general, the theory predicts infinite pressure differences between
the wing surface and infinity. In the particular case of a yawed,
symmetrical wing of Infinite aspect ratio, the results are, however,
again consistent with the theory and yield pressure distributions
which are the same as those determined by using only the component
of free—stream velocity normal to the leading edge. The derivation
of this latter result for a free—stream Mach number of one will be
given.

The difficulty of not being able to include thickness effects
in general, together with the uncertainty of the magnitude of the
viscous effects, leaves the question as to the limitations of such
a linear theory in application to practical wing shapes. Such a
question can certainly not be resolved by mathematical reasoning
alone. The extent to which the fluld medium can be idealized at
these speeds is left, for the -time being, unsettled and it remains
for experiment to determine whether the consistent mathematical
results which are obtained from the linearized equations provide
reasonaebly exact predictions. In this connection, it should be
mentlioned that the few experimental results available for the total
1lift on thin triangular wings at Mach numbers near one tend to
confirm the theory. But even if more detailed experimental results
indicate that further refinements are necessary, there 1s still
little doubt but that the linear potentisl solutions will provide a
vaeluable basis for more exact extenslons of theory.

The present report is divided into three parts. In the first
part, the linearizaticn of the partial differential equation for
the velocity potential is carried out in some detail for steady—
state conditions. A by—product of this derivation 1s the nonlinear
form of the equation for two—dimensional flow which was used by
von Kédrmén (reference 1) to determine his similarity rules for tran—
sonic flow. The equation for unsteady two-dimensional flow based on
the same assumptions is also given. The second part of the report
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is restricted to two—dimensional unsteady problems for values of
Mach number near one. The principal contribution of this section is
the evaluation of the change with time of the pressure distribution
over an airfoll starting suddenly from rest at a speed close to that
of sound. Such an idealized problem involves a step function in
velocity 1n which the ailrfoil has zero velocity for all negative
values and near sonic velocity for all positive values of time. From
these results the initial build—up of 1lift can be calculated for Mach
numbers near one, although the eventual vaelue of the 1lift cannot be
found by linear methods. Further application can also be made to
problems in flutter and gust loads. The third part of the report
treats the steady—state three—dimensional problem. Both lifting
surfaces and symmetrical nonlifting wings are considered and it is
seen that in the former case consistent solutlons are obtained by
particulaerly simple means. These solutions represent the limiting
case of both subsonic and supersonic lifting-surface theory and

give, for example, the same value of lift—curve slope at the speed

of sound that was obtained for the superscnic triangular wing by
Stewart (reference 2).

A list of symbols is given in the appendix.

PART I — THE LINEARIZED EQUATIONS OF MOTION
Steady State
The nonlinear partisl differential equation satisfied by the

velocity potential ¢ of an isentroplc flow field can be expressed
in the form

Oxx (jl —-ng-‘) + Oyy <:l —-93f?> + 02z <’l _ 222
a2 a2 a2

— £ 0yz 830z — 2 Ozx 0z0x — 2 Oxy ¥xby - o (1)
a2 a2 a2

where the subscript notation 1s used to indicate differentiation and
a 1s the local speed of sound given by the relation

@) - (2]} e

In this latter equation Vo and M, are, respectively, velocity
and Mach number of the free stream, 7 1s the ratio of specific
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heats (for air, y=1.4), and V is local velocity.
Introducing the perturbation velocity potentiel @, where
P=Vo X+ 0 (3)

it is possible to express equation (1) in terms of the derivatives
of ¢ and the paremeters M, and V,. To begin the linearization
of the resulting equation, the coeffgcients of the second ordered
derivatives of @ are expanded in Maclaurin series with ascending

. The convergence is assured provided

' (7;1) Moz(% u2+v2+v*?- )l <1 ) (k)

If the assumption is now made that vu—, <, ﬁ- << 1l so0 that
. . o 'o Yo
second and higher powers in the perturbation velocities can be
neglected in comparison with one, the partial differential equation
can be simplified to the form

Pxx < 1 ~ M2 1428, (r-1) M2 E—:I}+q)yy + Pzz
V-0 vO

—29xz X M2 —20Pxy L M2 =0 (6)
Vo Vo

From this equation all the succeeding expressions will be derived.

Two— and three—dimensional linear equations, My # 1. — Since

equation (6) is obviously nonlinear, additional assumptions must be
made to reduce it to a linear form. Clearly, these assumptions must
involve the reletive megnitudes of all the terms in order to determine
which ones may be neglected. Perhaps one of the least restrictive

set of conditions is that:
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(a) The ratios of the perturbation velocities to
the free—stream velocity are small enough to be
neglected when compared to one,

- (b) The velocity gradients at a given point of
the flow field are all of similar magnitude.
s
With the aid of these assumptions, it follows that, to the
order of the approximations made, the perturbation velocity potential
¢ satifies the well-¥mown linear equation

(1—M02) cpxx'*'q)y—y'"cpzz‘—’o (7)

In the case of two—dimensional flow, the equation is independent of
y and thus may be written in the form

(1-M3) o +9,=0 (8)

o~ and three—dimensional nonlinear equations, Mg = 1. —

The study of equation (8) in both subsonic and supersonic flow has
shown that for arbitrary lifting surfaces or symmetrical nonlifting

airfoils the value of the Induced velocity u on the surface of a
. -1/2
fixed geometric configuration is proportional to ([ 1 —-Mozl) '/ .

In all sirfoil problems, the value of u becomes infinitely large

as My approaches one, either from above or below, and the basic
essumptions are thus violated. Such a difficulty led Oswatitsch

and Wieghardt (reference 3) and Sauer (reference 4) to abandon the
restriction of linearity and to seek a more exact equation at M, = 1.
Retaining the assumptions underlying equation (6) and setting

Vo = a* where a* 1is the critical speed of sound, it follows that

at M, = 1 the perturbation velocity potential satisfies the equation

(7+1)
a*

Since Py is much larger than P, as the Mach number approaches
one, equation (9) may be further simplified to

(y+1) _
—;;—qu Ppx ~Ppz =0 (10)

2
Px Pxx — Pgzt ';_)_(_' Qg Pxz = 0 (9)

If, in three dimensions, the perturbation velocities do not
remain small, equation (6) again supplies the necessary form of the
differential equation at My = 1. From the relation V, = a*, the
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requlred expression 1s

7+1) 2
ga_*_q)xchx—'chy— zz-l--a?‘_-q)chxz *q)yq)xy (ll)

Tywo— and three-dimensional linear equations, My = 1. —

Equation (10) has been used by von Kirmdn (reference 1) to establish
similarity rules for two—dimensional transonic flow and is the basis
for work continuing at the present time. (See also reference 5.)

If et M, = 1 the assumptions made in the linearization process still
hold, it follows from either equation (10) or (8) that the differential
equation reduces to the form

Ppz = O (12)

It is possible, however, to predict independently from this relation
that linearized methods cannot be applied to the calculation of
erbltrary eirfoll pressure distributions. The range of applicability
of such an equation 1s thus almost nonexistent. On the other hand,
the linearized form of equation (11) or (7) at Mg, =1 is

Pyy + Pyz = O (13)

and from this equation a class of nontrivial solutions can be
obtained for particular boundary conditions. Both equations are

of parebolic form in the number of dimensions for which they are
defined. In the present report, formal solutions satisfying the
imposed conditions will be obtained in three dimensions for flat
1ifting-surfaces with swept—back leading edges and for an Infinitely
long, symmetricel, swept—back wing.

Unsteady State

The derivetion of the steady—state equations for the velocity
potential was developed in some detail because of the various results
to be obtained. Similar methods can be used when umsteady conditions
are to be considered, the differential equation for the velocity
potential being now in the form

—52— <¢tvt- + 20% Oxpr + 2<1>y Oypr + 20, tav>

~F by 0y O 2z~ % Oz 0 qsx aszxytbxtby—o (14)
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where t' represents time. The details of the derivation can,
however, be avoided by referring directly to the equation satisfied
by the velocity potential for the propagation of sound waves of

small amplitude. (See reference 6, p. 492.) In this form of the
equation the Carteslan coordinate system x, y, z is assumed fixed

in the medium so that free—stream velocity 1s zero, while the wing,
which moves in the direction of the negative x axls with velocity

Vo, generates small pressure disturbances. As a consequence, the
velocity potential of the fleld satisfies the well-known wave squation
in three space dimensions:

aiz-%rtv—q’xx"q)yy_q)zz=o (15)

Equation (15) is reducible to canonicel form by means of the
relation

t = agt?

and the three—dimensional form of the equation is therefore
Pty ~ Pxx ~ Pyy ~Pyz =0 (16)

while in the two—dimensional case independence with respect to ¥
yields

Py — q)n "'CPZZ =0 (17)

PART II. TWO-DIMENSIONAI, LINEAR PROBLEMS FOR My NEAR ONE

Unsteady State, Mo 2 1

It was pointed out in the derivation of equation (12) that the
linear equation for the veloclity potential is not applicable to air—
foil problems In elther the subsonlc or supersonic regimes for My
near one. The possibility still remains, however, of analyzing
unsteady flows during the period in which the perturbation veloclties
remain small. As an example of such a problem, consider the case of
a flat 1ifting surface st a small angle of attack « starting from
rest at a veloclty Vo near the speed of sound. The perturbation
potential for such e motion is equivalent to the change in potential
brought about by an abrupt change o 1in angle of attack of an air—
foll flying in a steady-state condition at velocity equal to V.

e ————— e et et et ——— T Y —— A e s et e o = e
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The chenge in load distribution brought ebout by this maneuver is
the so—called indicial load distribution and a knowledge of such !
indiciel functions is important for applications using operational g
calculus. f

————characteristic traces Figures 1(a) and 1(Db)
furnish an insight Iinto

the nature of the boundary
conditions for airfoils
traveling, respectively,
st supersonic and subsonic
speeds. The chord 1s ini-
tially on the x axis with
leading edge at the origin
and traliling edge at |
X = Cg. With increasing ,
time, the wing sectlon \
travels in the negative
x direction and sweeps
out a portion of the =xt
plane as shown in the
figures (indicated by
shaded areas). Through— “
out this part of the
plane the boundery condi-—
tions require that the
(b) Subsonic wing. induced vertical velocity "

Figure l.— Boundary conditions for é; tgogia;g%;eeﬁgzgzge

two—dimensional unsteady-lift velocities are continuous

problem. functions of z. In fig—
ure 2, sketches of the

airfoil in the supersonic and subsonic cases are shown together
with indications of the manner in which the disturbance field
spreads. These wings are presented in xyz space with time as

a parameter so that their coordinate system is not to be confused
with that of figure 1. The airfoils are traveling from right to
left at Mach numbers of 0.8 in the subsonic case and 1.2 in the
supersonic case, and for & time corresponding to that required

for the wing to travel a distance of one—third chord length. At

t = 0 cylindrical waves are induced at each disturbance point, that
is, at each point of the chord. These waves expand radially at the
center of the expanding waves moves relative to the initial disturb—
ance point. At a given instant in time the entire disturbance region

e me— ¢ v — e e ————— -
' 0
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of the airfoil is contained within the closed surfaces shown in the
figures, the outer surfaces corresponding to the largest values of

Figure 2.— Sketch showing extent of disturbance fields after
travel of one—third chord length.

time. In the supersonic case, the pressure distribution over the
wing reaches a steady—state value as soon as the wing moves ahead of
the expanding cylindrical wave produced at t = O by the leading
edge. In the subsonlc case, the wing never leaves the disturbance
field of the cylinders and, as will be seen later, the steady-state’
pressure distribution 1s approached asymptotically.

It is apperent from equation £l7) that the characteristic cones
have semivertex angles equal to 45 and that the cones with vertices
on the =xt plane have traces with slopes equal to fl. These cones
determine the upstream boundary of the field of influence of the
vertex point and their cross sections in the plene +t = constant
are the disturbance regions of the cylindrical waves arising at the
vertex. Thus, perturbations in pressure produced initially at the
leading edge of the wing section are confined at later time, Iin the |,
modified coordinate system, to the cone with vertex at the origin
and traces x = +t.

e e e e e e i g o w s e




10 NACA TN No. 182k

The solution of equation (17) for boundsry values of the type
under discussion has been Indicated In reference T through considera—
tion of an analogue problem in supersonic lifting—surface theory.
Thus, the shaded asreas in figures 1(a) and 1(b) are thought of as
swept—forward 1lifting surfaces situated in a stream directed along
the positive t axis at a Mach number My =,/2. The boundary values
remain the sams; that 1s, Pz =w = Voo on the wing and @y, Py, Py
are continuous functlions of 2z elsewhere in the xt plane. In
1lifting—surface terminology, the umsteady case for supersonic speed
becomes e wing with supersonic leading edge, while the case indicated
in figure 1(b) involves a subsonic leading edge.

The solutlon for the wing traveling at supersonic speed has been
given In reference 7 1n a form valid for all Mach numbers greater
than or equal to one. The expressions for load coefficient Ap/q,
where

Ap PPy
2
T Togv,

differ analytically in varlious regions of the xt plane. These
expressions are:

Region A (between lines x = -Mjt, x = —t)

é&’- ha (18a)
2.1

Region B (between lines x =~t, x = t, and x = cgMt)

Ap _ Lq, 1 t ~1
Rl SERTE R (TR

Region C (between lines x =t, t =0, and x = coMot)
Ap
4p 18¢)
1 (

SlE

From the pressure distributions 1t is possible to calculate the
indicial 1ift coefficient CIu,(t) as a function of My and +.
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Since
C
1 ° Ap
Cr (t) = = =L ax
1, () cof qm
[o]

the following results are obtalned:

First time interval O <t <——9—
:I.+M0

Cr, (t) = (19a)

2
M,

c c
Second time interval Q. <t —2
< T S ML

£ t —~tM 2
CLm(t) = -ii[}—(f- + arc sin Co o > + —=t—— arc cos -—tM—O—:-Q—-—I'-—io—-

MO 2 t ',/Moa—l o
+ M;-co 2 (co—rtMo)g] (29p)
Third time interval —@-<t
Mo—L
Cr () = 7===|=A=.lL (19¢)
I'Cl- M02.__l

These results have been discussed in reference 7 for values of
greater than one. They still hold, however, for sonic f£flight
speeds and, in fact, can be reduced to the expressions:

Firet time interval 0 <t< %Q
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Clu(t) =4 (20a)

Second time interval -c_:ég_ <t

—t /21;
CIm(t) = %(% + arc sin cg + 2 c:%) (20b)

The indicial 1ift coefficient i1s seen to be constant and equal to La
c
up to the-time +t! = é%' or up to the time required to travel one—half
)

chord. Following this first time Interval the indicial function rises
monotonically, reaching an infinitely large value as time increases.
The growth of CIu(t) is, of course, in agreement with the fact that

the steady—state load coefficient becomes infinitely large in linear
theory for My=1. This means that the theory camnnot be used to predict
the complete extent of the CLa(t) variation with time but that

during the earlier part of the motion the assumpticons remain valid.
In figure 3, curves of CLm(t)

v
are plotted as functions of %—
o

for values of M =1 as given by

equations (20a), (20b), and

M,=1.2, M=1.4 as given by equations

(19a), (19b), and (19¢). Also

included in the figure are variations

of Cp, (t) for M =0 as calculated
a

from Wagner's results (reference 8)
by R. T. Jones (reference 9) and
also for =0.8. The derivation
of 'results leading to the M,=0.8

curve will be given subsequently

in this paper. The value of Cl'cz(t)
Filgure 3.— Indicial-lift—curve

slope for Mach numbers between at MO=O.11- for & short interval
0 end 1.k shown to time requireq OF ©ime 18 also drawn, The dashed

to tr half v . portions of the curves were not
© travel 12 —chord lengths calculated but were drawn to agree
with the known asymptotic value

of the 1lift function.
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Application of the indicial 1ift function at M,=1.~ Once the

indicial 1ift function is known, it is possible to determine the
1ift corresponding to a given variable motion. Consider, as an
ldealized example, the case .

where the airfoil experiences

an abrupt rising and sinking

motion at regulaer time inter— a(t)

vals., Such a motion involves
abrupt plus and minus angles ‘ 1
of attack without rotation or :

pitching so that a(t!) is
glven by the meander or square—
wave function shown in figure
4(a). In this ezample the (a) Impressed angle of attack.
varietion of o 1s such that G
the curve for Cp(t') can be

calculated easily. In figure
4(b) cg(t') 4is shown for the
case in which the discontin—
uities occur at intervals of
time equal to c¢,/V,, that is, L L

after each chord length of

travel. The principal point (b) Resulting variation of 1ift.
of interest in this examplse

is the fact that such a

motion yields no excessive Figure 4.— Lift resulting from
value of 1ift or perturbation square-wave angle—of-attack
velocities and the entire variation.

enalysis is within the frame—

work of linear methods.

T

r
— t
1

—

S

{

S
__..+_.._..

When the variable motion is more complex in character the 1ift
coefficient can be expressed by means of Duhaemel®s integral. Corre—
sponding to the engle—of-attack variation o(t?) as a function of
time, the 1lift coefficlent Cr(t!) 1is given by the expression

%!
o(t?) = 55 [ og (=) @ (1) ar (21)

(o}

In anslysis related to equation (21) it is convenient to employ
techniques associated with the use of the Iaplace tramsformation. (See
reference 10.) Thus, if the Laplace transfoim Zf(8) of the function
£(t) 1s defined by the relation



L NACA TN No. 182k

o0

(&) =f et 2(¢) at

(e}

then equation (21) can be rewritten in the form
Cr(s) = 8Cry(s)a(s) | (22)

Consider now the case of a 1ifting flat plate oscillating
harmonically without pitching at a frequency @ &nd maximm angle
of attack equal to S Setting

a(t) = oy o1t - Oy &40 (23)

then equation (22) yields

Cr(s) 4 ( 2 f_—s%”erf /295) (2k)
Uy T s-1m conJ; 2

By straightforward manipulation, the inverse transformation of
equation (24) can be shown to give

% = 4ol {1 +4/;-§v o ["‘“’t“’) -1 S(“"""")] o

—2 ,/;5- 1 Ny(ast, v) = 2/%— Nz(cnt,v)}- 2 arc tan,/ < ()

where

<
]
|8
(o)
B|&
Q
O
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w* is true impressed frequency
intt?
(o = apey © )-

C(wt—v) , S(wt—=v) are Fresnel's
integrals (reference 11).

Ni(wt,v), No(wt,v) are integrals
defined in the eppendix.

If the response to a cosine
variation of a 1is required,
only the real pert of equation
(25) 1s used. Such a response
in the early stages of the
maneuver is shown In figure 5.
For very large values of tims
C;, as given by eguation (25)

approaches the velue

15
4 -
Lo G
a a
9] 0 ot
-2{
-4

Figure 5.— Lift resulting from
" cosine-wave angle—of—attack
variation.

T-t:%.; = 4o 1% (/;% otV - erf,/ﬁ> (26)

from which both the amplitude and phase shift of Cp resulting from
either an Impressed sine or cosine variation of « can be readily

©C) S initial value

3 final value

Figure 6.— Amplitude of oscillatory lift resulting from a cosine
angle—of—attack oscillation (without pitching) at M, = 1.

e e o e At A A e e A T P A e A =
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determined. Figure 6 shows the amplitude 'of 1ift oscillation corre—
sponding to continuous angle—of—ettack oscillation, as determined
from equation (26), plotted as

| wZo a function of v = aa_%g_ It is
Cos wt w= fa epparent that as @ approaches
zero, Cy, approaches infinity;

' we L t that is, as the impressed wave
T4 approaches the "step" function
- (fig. 7), the 1lift coefficient

epproaches infinity. This
result is in agreement with
equation (20b) as t approaches

Figure T.— Variation of cos wt infinity. As the frequency
with t for various values of parameter V 1s increased,
w. however, the value of Cip /a'ma.x

is reduced and reaches a minimum of about 3.4 for a velue of Vv = 0.9.
For a speed of sound around 1000 feet per second and a wing chord of

6 feet, this would correspond to a frequency of 47.7 cycles per second,
a value well within the range of practical flutter freguencies. It is
interesting to note that figure 6 also shows that as the frequency of
oscillation becomes large (i.e., y>3) the value of Cp_  /[ap.o

approaches the value 4. This is the same as the value for CLa,(t)
in the early stages following a step varistion of «.

Unsteady State, My<1

~

It has been pointed out that, in the determination of the
indicial 1ift function for a wing traveling at subsonic speeds, the
lifting—surface analogue involves the calculation of load distribution
over a swept—forward wing with subsonic edges. This means that
recourse cannot be made in the solution to the simple source distri—
bution method used in reference 7 to treat the Mgl case. Since,
however, a portion of the leading-edge 1n the present case is still
supersonic, the problem is particularly adapted to lifting—surface
methods developed by Evvard in reference 12. Figure 8 indicates, as
in figure 1(b), the geometry associated with the boundary conditions.
In the Evvard analysis the solutions, as In the previous case, are
calculated for various reglons. As an ald in identifying the different
results the sketch denotes these regions by Roman numerals.
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The load distributions
and indiclel 1ift functioms
will be given here for values
of t up to the time when
the characteristic from the
tralling edge first crosses
the leading—edge trace, that
is, for

or

< < c
0=ttt =
2ol 1)

This period covers the time
in which the wing travels

2M_/(1-¥,) half chords and,
since the present analysis

Figure 8.— Reglons used in the

study of subsonic unsteady 1lift.

is concerned with values of Mach number near one, will in some cases
extend beyond the range of the linear theory.

The following results are obtained for load coefficient:

Region I (between lines x=t, t=0, and x=cg-t)

op _ ha

q

= ¥ , (27=)

Region II (between lines x=-M_t, x=t, amnd x=c,~t)

x

-5 3%/

2
Region III <between lines x=cg~t, x=t, x=—t + S0

Cc
t = °>
1M,

+ arc tan

(27p)

14M,’
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pp B tx hig, [ar in 2x—t (1-M,) + avc sin e(co—x)—t(1+Mo)]
4 w(l4My) N/ x+Mot My (14M)t +(1-M,)
(27c)
Region IV (between lines x=t, x=c,M,t, and x=c,~t)
sp _ 8o o
T - R arc sin (ML) (274)

2c Co
Region V <between lines x= -t + E—i’ x=cgMt, and t = g "Mo>

Ap 16a. t—x [

q :(2(1+M°) b % — EF(¥,k*) — RE(V,k!) + K],-(xy,k:)}

—-%%; arc sin T + %ﬁ; arc sin Q?It;t;fO) * nziijﬁf) (lfg;zgﬂ?:+t)
A ) (27e)
where
Kt =y/1%2 _
A -'(t+x§c?1+mb)
y = arc sin /st
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W

=

Yg, 1
)i} X
A [./<v-vl)?u+vl>] '

19

{sm..l (utvy ) (1) [ (v=v1) (1Mo )—co /2 14271 [v(14Mg)—co v/ 2-u(1-M,) ]

[v(14Mg)—co o/2 + va(1-¥,)] [u(1,) — va(1+M,)]
where

u = 2 (tx)

= L (t+x)

N

F(g’ig:} incomplete elliptic integrals

K, E complete elliptic integrals

In figure 9(a) the growth of pressure distribution with time is
shown at subsonlc speed for the period of time covered by equations (27).

For purposes of comparison,
pressure changes calculsted
from equations (18) are shown
in figure 9(b) for supersonic
£1light velocities.

Equations (27) suffice
to determine the initial
growth of indicial 1ift coeffi—
clent at subsonic speeds.
Such results were given in
figure 3 at M =0.8 =along

with the calculated growth (a) Subsonic. (b) Supersonic.

for about one chord length

of travel at M =0.4. The Figure 9.— Pressure distribution on

value of CLu(t) at t=0 wings receiving sudden angle—of—
attack change at + = 0.

is, for all flight speeds,
equal to k4/M,.

Expressions for Cla(t) are as follows:

First time interval O <t< —&-
ToM,

e s e — = n e e e e T TmR—— e e —
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Cr,(t) = [co—'t(l—Mo)] (28a)

Second tims interval

Co

co Co
A, <t <1

hco—S’c(l—Mo ) 2¢ ot (1-M,2)
11:M°co 1+, arc tan 2t(1+Mo)—Qco

Crg(t) =

+ % < - ii;”() + ::;3;1:)2 JEt(l+Mo)—Qco] [2c~t(1-,7)]
+ hco_ij;::‘%) arc sin / ti:(l':fﬁi;cq ;L__tf t(14M, )—c,®

+ [2co — 5(144,)] arc tan /t(l )_co} ( dx

(28‘0)

where (%) is given by equation (2T7e).
v

PART ITT — THREE-DIMENSIONAL LINEAR FROBLEMS FOR M, NEAR ONE

Steady State

General solutions for arbitrary Mach numbers.— Two methods of

attack are available for the solution of linearized problems at sonic
speeds. TIn the first place, solutions to equation (13) can be
written formally and the extent to which these solutions satisfy the
original assumption can then be Iinvestigated. In the second place,
general solutions of equation (7) can be studied in the limit as
approaches 1. Since this latter method furnishes added information

concerning the variation of the variables with M,, 1t will be used
fiI‘St. b

e r——— e ———
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In linearized theory the boundary-value problems of wing theory
are concerned with two separate properties of the wing: the thickness
effects and the effects produced by the twist, camber, and angle of
attack. The first 1s called the nonlifting case and the second is
the 1lifting case. Solutions of eguation (7) for M 2 1 are given
in reference (13) as follows:

In the nonlifting case

__1 Ao (x1,¥1)8x18y1
P - g“[f W zx1)2-p2(3—y, ) 25222 =)

where B =My -l and AW, = 2w, where W, is the vertical pertur—
bation velocity on the wing and therefore related directly to the
slope of the wing surface relative to the x axis. The integration

region T 18 the area on the wing within the Mach forecone from the
point x, y, Z.

In the 1ifting case

2z A »¥1)dx j
CP(X,Y,Z) = Eﬂ]; Iff B<z Qm(xl yl) 14y (30)
T

2 2 2]3/2

[(1—11)2—132(3"-'.?1) -z

where A9, 1s the jump in the value of the velocity potential in
the plane of the wing. The sign | denotes "finite part" of
the integral and introduces special integration techniques. (See
reference 13.)

Equation (29) expresses the velocity potential for the symmetri—
cal wing In terms of an integral involving supersonic source distri—
butions while equation (30) employs doublet distributions. In the
two cases the distributions are determined from the geometry and the
load distribution over the wing,respectively.

Source and doublet distribution effectiveness at infinity.— It

is well known that the 1ift, drag, and pitching momemt of a glven wing
mey be calculeted either from direct integration of the local pressures
on the wing or by means of momentum considerations where the induced
velocitles of the wing are determined at an infinite distance and

the deslred forces are releted td an integration over a comtrol surface




o0 " NACA TN No. 182L

enclosing the wing. In the three following sections the latter
epproach will be considered and the limiting value of drag at M =1
computed. The initial portion of this theory requires the evalustion
of source and doublet effectiveness at infinity and the concept of
equivalent source position, an idea which appears to have been given
first by W. D. Hayes in reference 1lk.

Consider, as in figure 10, a point P with coordinates x, y, 2z
lying within the induced field of a supersonic wing. The Mach fore—
cone from P is given by the relation

zx1 = B (3-51)2 + (221)2 (31)

where X3, yi, 21 &are running coordinates of a point on the surface
of the cone. Introducing polar

coordinates
L — —
Z " _Plxy,2) Z] = y=rcosb,z=r1r 8inb
t
| r r and rewriting the abscissa of
E x 8 P in the form
Br—sle X X = X +Br
X—]
it follows that the trace of
the forecone in the z;=0

plane is, in the limit as =r
approeches infinity,

Figure 10.— Coordinates used in
study of supersonic source. X1 = Byicos 6+ X, (32)

It is, moreover, possible to show that the effect on the velocity
potential at the point P as r approaches infinity is the same
for all points (%1, yi, 0) for which =x;—8yicos 9= constant. The
value of this effect is

1
P = —_—
en o/ 2Br(xy—x3+Byicos 0)

and follows from the asymptotic evaluation of the supersonic source
potential

(33)

1

P = ——
2ty (x—x1)5B(y—y1)5B z°
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for large values of r. The potential at P for the source at
(X1, ¥1, O) is thus the same as for the source shifted along the
trace to (x,—By,cos 6, 0,0), the intercept of the trace on the x
axis. TFor Mach numbers near one, equation (33) can be rewritten

o) 1

" 2% J3Br(Zo%s) (3k)

and is equivalent to the potential at P for the source at (x,, 0, 0).
The induced velocities at P due to a source at (x;, yi, 0) follow
immediately, for arbitrary My and for My near one, from the
gradients of @ in equations (33) and (34). It is important to note
that equation (33) is a function of the azimuthel engle of P so

that, in general, a source does not have a fixed equivalent position
with respect to its potential at infinity; equation (3%), however,

is Independent of the azimuth 6.

The source—sink potentiel is appliceble to the study of
symmetrical nonlifting wings. When 1ifting surfaces are to be analyzed,
the doublet potential :

_ -z
o [ (x—x1 ) B> (y—y1) 8"21%/2

mist be consldered and the question of equivalent doublet position

with respect to the potential at Infinlity arises. In this case the
doublet position can again be shifted parallel to the trace of the

Mach cone from P at infinity and the potential at P is given by
the expression

%z
?= (35)
2 [28r(xo—x1+By1c08 6)]°/%
and, for Mach numbers near one,
2
9 E 2 (36)

- en[2Br(xy—=x1)13/2

Momentum relationsg.— The vectorial force '§> on an aerodynemic
body inside a control surface S 1is given by the surface integral

T e A 8 e e < = v it e v= ¢ o cr Ae n v mmman =
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P fs f(p—po) % - fs f;K-x}rog).a—EJ (37)

where vector notation is used and

o) subscript indicating free—stream condition
p,o0 local static pressure and density

N

v local perturbation velocity vector

For the purposes of the present report, equation (37) will be
modified according to the assumptions of linearized theory and the
surface S vrestricted to a semi—infinite circular cylinder of
radius r, its axis of symmetry lying along the x axis, and with one
face in the x=0 plane while the other face is at x=constant. (See
figure 11.)

From linearized theory,

and

P—D,=— po[vou+%(u2+v2+w2)]+% pMyZu®

The end faces of the cylinder
Vo r mey be denoted, as in the
— [ 1 T figure, by I, II, and the
curved surface by III. Then in
supersonic flow, if a distribu—
/ tion of sources is restricted
-y to a reglon downstream of I,
the drag D on the body corre-—

- sponding to the source distribu-
tion is given by the expression

Figure 11.— Surfaces used in study
of momentum.
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D= % Po fII f[(M°2_1)u2+v2+w2:l dydz—p, fmf uvrrdedx(38)

where v, 1s the radial component of the perturbation velocity. No
loss in generality results, moreover, if the surface II is moved
infinitely distant downstream and the radius of the cylinder is made
arbitrarily large. The notation IT and IIT will henceforth refer to
this particular configuration.

If the drag of a lifting surface is to be calculated, the
surface and 1ts vorticity wake are replaced by doublet distributions
and in that case the integral over reglon II in equation (38) is
called the vortex drag of the body while region ITI yields the
wave drag. It has also been shown (see, for example, reference 17)
that the vortex drag of a supersonic wing is a function only of its
span load distribution and is equal to the induced drag at subsonic
speeds for the same span loading. If a finite nonlifting body is
considered, each of the veloclty components in region IT is attenusted
in such & manner that its contribution to the vortex drag i1s zero.
The integration over réegion IIT again provides the wave drag for the
nonlifting body. -

The combination of the results given in this and the last
section provides a method for finding the wave drag of an arbitrary
body. The first step 1s the determination of the source—sink or
doublet distribution corresponding to the body and then, by means of
the principle of equivalent positions, the sources or doublets are
moved to the x axis. The wave drag is-then calculated from equa—
tion (38) once the induced velocities on the control surface are
known. In the next section the wave drag will be written in a
different form and the drag at sonic speeds will be investigated.

y This analysis will also provide
- some insight Into the range of
M . validity of the sonic theory.

Evaluatlion of wave drag as
M, approaches one.— In order to
study the drag of a symmstrical
body at zero angle of attack, it
18 convenient to consider the
general expression for the velocity
Ixg potential given in equation (29).

7 TIntroducing first the transforme—

4ion (fig. 12)

Figure 12.— System of axes in
transformation equation (39).
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.

E = —yltanp+x1
(39)
1 =7%18ecu

whers
tan u = B cos @

equation (29) becomes

( ) =L cos p AWo(g ,n)dEdy
RS = SV Y Mo/ ey - iy

Bince, however, it has been shown that ? evaluated infinitely far
away from the wing does not change if a source is moved along the
line §=constant, it follows that the source strengths can he
integrated along these lines. The second Integration is then along
1=0 where, from equation (39), t=x; and the value of the potential
at an Infinite distance is

o(x,7,2) = - 2 i (x_::;z_sd;z_ﬁzzz [ stolzampan

Setting
£(x1,1) = — cos uf B5io(x1,m)dn

1t follows that

x—-fr
1 P(x1,p )dx;
Y (x;r;e) = 5x 5 —'_——'—-(x_x:’.)z =2 ()4-0)

and this is the same as the potential Ffor s body of revolution with
source strength per unit length given by f(x;). The induced velocities
corresponding to the potential in equation (40) are found to be, after
Tirst integrating by parts and using the notation o/dx, f(xl,ps =
f'(x1,u) together with the reletion £(0,u) = 0,
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d 1 —Br  P1(xy,p)dxs

= = == —_— hy
T R e~ ()
and - ]
- _ =1 BT (zxy )£t (23,0 )dxs
TUER TR e e

Asymptotic values of the velocity components for large values of r
are readily seen to be, after first setting x=x,+Br,

4=l PO £ (x1,m)dxa (43)
2:1»\/2Br_£ ;xo—xl
and
X9
1 B £1(xq,p)dxy
e/ [ TEREEn (44)
r 2t N 2r 5 '/—_I .

Equations (43) and (M%) may be used together with equation (38)
to give for the value of drag the expression

fx° £1(xq,p0)dxy (O £1(x2,m)dxs (15)

25 ©
D= E;%% d?/ﬁ ax,, R A S i)
; o o o VEo X1 J, NEoTX2

Assuming that the body is of finite length so that £!'(x)=0 for
x>1 vreversal of the order of integration yields the relation

21 1 1
D= — -e-%f def f £1(xy,1) Pt (Zo,n) ln|xy~xo [dx1dx,  (46)
8= Jo o Yo
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If equation (46) had been derived for & body of revolution, then
£(x) would have been independent of the angle p and in that case
the expression for drag would reduce to the form

3

1 1
D=-12 fo j; £4(x1)2" (x2) In |x1-20 |axs0x2 (46a)

4 4
This expression was given by von EKarman in reference 15.

Tor the study of the drag of a llfting surface, congider now the
general expression for the velocity potential given by equation (30).
The doublet distribution occupies in this case both the wing plan form
. and the weke since the jump in @ exists also in the vortex wake.

By use of the trensformations in equation (39), equation (30) becomes

N

2
7 (X)Y:z) = £z
e 2x

' f cos p Ap(E,n)dtdn
T [ (Hl)Z_BZ(m)E_B222]3/2

and, exactly as in the case of the source distributionm, this can be
reduced to ‘

_ ﬁz_ cos y dx A
?(xys2) = 5 U (e R

Setting
g(x1,1) = cos uf A9(x1,m)dn

it follows that

B2r sin 0| pE BT g(xi,u)dx;
2n [ (z—=x,)2-p5r2 1872

cp(x,r,e) =
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Integrating by parts and using the fact that g(0,u)=0

d _sine | pPTPT B3 (x1,m)ixs

w= dx 2 o [(z—=x;)5-B2r2)3/2 (1)
and
~—Br
i _sin6 /1 fx—x;)g'ﬁx; ég)d.x;
Vr %§E 2nr r\zfx (x—x1 ) 2—p2r?
BT (z-x; )B2rg®(xa,u)dx;
- } (18)
/; [ (x—=x,)2-p2r2]3/2

where g'(xy,n) indicates -a—a—g(xl,u). Setting x = x_+fr and
X1

letting r approach infinity, the asymptotic expressions for
equations (47) and (48) become, if g'(O,u) = O,

x
—=in6 /g O g't(xy,p)dx;
21 /;r_[ ,/xo—xl (14-9)

sin ) /—f "(xlxl-l)dxl (50)

The relations Jjust derived may be used in conjunction with

equation (38) to give the wave drag of a lifting surface. This
result taekes the form

and

Vr

25

D = 8% d sinzef dxof 8"(x1;u)dx1f gt (xz,p)dxo
5", V==

(51)

- v e mrmerm e e e e e e e e e e ———— - . e mem—
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In the wake of a lifting wing the function g"(xl,p) =0 and if,
moreover,

Co
f &' (x1,1)dxs = g'(cos) — &*(0,u) = 0
[e]

reversel of integration in equation (51) yields the simpler expression

p % 3T YA
D= ggg— sin®o ao d/\J[‘ g' 1 (x1,u)gt ' (=2,n)in le—le dx; dxo
o o o '

(52)

It is possible to draw some general conclusions from equations
(46) and (52) regarding the wave drag of wings and bodies of
revolution without the necessity of detailed applications to particular
configurations. It is apparent immediately from equation (46a) that
the wave drag of a body of revolution at zero angle of attack is
independent of Mach number. This conclusion does not apply, however,
to the nonlifting wing since the distribution function f(x,u) in
equation (46) contains ths variable p which, in turn, is a function
of both 6 and f. As Mo approaches one, the study of the non—
lifting wing is divided most conveniently into two parts,depending on
the behavior of f{x,u).

Consider first the more general situation in which £(x,n) 1is
not zero; that is, the case in which the number of sources does not
equal the number of sinks along the line £ = constant. This means,
when M,1s1l, that an unequal number of sources and sinks appear in
the transverse or yz plane and, if equation (46) is epplied, either
a finite or an infinite value of drag can result. The limiting value
of drag at sonic speed, obtained from integrations of surface pressures,
was glven by Stewart and Puckett in reference (16) for several wing
plan forms, all of which had nonvanishing values of f£(x,u). If the
pressurs distribution is calculated, however, the local pressure
coefficients are seen to become-infinitely large as sonic speed is
reached, even for the body of revolution, so that the assumptions
of the linear theory are violated and the reliability of the drag
predicted by equation (46) can in no case be assessed even though
the predicted values remain finite. Equation (43) shows also that
when control-surface methods are used to compute drag at M, =1,
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the x component of induced velocity increases indefinitely when
f£(x,u) 1s not zero and that the theory is, therefore, no longer
consistent.

In the very special second case, that is, when f(x,n.) vanishes
for all velues of 6, the analysis just presented breaks down at
equation (40). It is clear, however, that in this case there are
equal numbers of sources and sinks in the & = constant plane and
the behavior of the flow field at infinity is, therefore, exactly
the same as that which would have been produced by a distribution
of doublets. Equations (49) and (50) give the velocities induced
at Infinity by an arbitrary doublet distribution. These induced
velocity components are, in terms of B, one degree higher than the
similar components for the monlifting case. The wvalues of both
u and v, can thus be expected to approach zero for all values of
Mo, as r approaches Infinity for any flow field generated enmtirely
by doublets or by an equal number of sources and sinks., It follows
then that the linearized theory for lifting surfaces (generated
entirely by doublets) and for bodies with thickness distributions
such that f(x,u) vanishes (generated by an equal number of sources
and sinks in all £ = constant planes) is entirely consistent as
M, approaches one and, in particular, for M, equal to one. This
being true, it follows immediately from equation (52) that the wave
drag of a lifting system is zero at sonlic speed.

Thickness solutions at My = 1.— A swept—back wing of constant

chord and infinite aspect ratio is an example of a practical aero—
dynemic shape for which an equal number of sources and sinks occur
in every yz plane. (See fig. 13.) Consider the case in which the
wing cross section 1s diamond shaped with a slope equal to A in a
plane normel to the leading edge. Then, in a trensverse plane,
(section BB of fig. 13) W, equals *VoA cos ¥, the minus and plus
slgns applying, respectively, to the left and right of the ridge line.._
Accordingly, the solution of the problem can be written in terms

of & distribution of sources, thus

x cot ¥
P = l‘/P Voh cos ¥ In [(y-v1)3+22] dya

-5 .
[o)
- —2 _)cot
<% 2 c05‘;> cot ¥

o )
X + ———— Jcot \F
+ -2%f< 2 cos ¥ V) cos ¥ In [(yy2)%+z°] dy1  (53)
x cot ¥

e e ey e e T e T e -
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y-(x+5%§iﬂcof¢
y=xcot y

3

-

Co
cosy 1

tan 3; = Acos ¢
Section A-A y =(x —Ce

—

tan 3,= Asin ¢
Section B-B

Figure 13.— Views of infinite swept wing showing coordinates.

The value of 0®/dx can immediately be found to be

oy (VM cos ¥
ox ox tan ¥

A rm) e [ - 2] )
{[-(z) e [ () ]

(54)

1

from which it is apparent that as r = 4/ y2+2z2 becomes infinitely
large, qu/ax approaches zero. In the plamne of the airfoil, that
is, for z = 0, O@/dx becomes
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_ 1 S |
> Vh cos ¥ [ (y tan ¥—=x Sco sec ¥)(y tan V—x+ 5co sec llf):l
x tan ¥ (y ten y—x)2
and, using the definition for pressure coefflcient, Cp = - @,
this becomes \ i
Lo ¢
Cp = 2\ cos T 1n 2 _:l;l (55)
" % ten ¥ gin ¥ — x cos ¥

Equation (55) can be derived by entirely different methods.
Perhaps the most direct of these alternative derivations 1s the one
introduced by R. T. Jones in reference 18. The general statement used
in that report is that the component of translaetional velocity of a
cylindrical body in the direction of its long axis has no effect on
the motion of a frictionless fluid. Hence, the pressures over the
wing shown in figure 13 are the same as those over & wing moving
normal to a free stream with a velocity YV, cos ¥. Using the Prandtl-
Glauert correction to the thin airfoil solution of a two-dimensional,
diamond—shaped, nonlifting section exposed to a free stream with
velocity V, cos ¥, one obtains, for My cos ¥<1,

co/2
1 Yo N 2 2 1
® = —'-E—ff-co/z m ml(xtt) e e (6)

where Ww, 1s the vertical Induced velocity on the upper side of the

= 0 plene and x!' 18 measured normal to the leading edge. If
this solution is referred to the axial system of figure 13 by the
transformation

x' = x cos Y-~y s8in ¥
and the integration is performed after taking the partial derlvative

with respect to x, the resultant expression for pressure coefficient
is

O\cos2 % Co 3 .

cos

NPT S SO
? 1 /1My2cos® ¥ - cos y—ysin ¥ (o7
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At sonic speed this equation reduces immediately to

1 2
- _2\ cos ¥ B % _'J
Cp n tan ¥ in |:<x cog y —y sin ¥ 1 (58)

which is identical to equation (55). The result expressed by the two
equations is, of course, not new. The significant point is that the
same varlation in pressure coefficient was obtained by two widely
different avenues of approach and that the result obteined from the
prerticular methods applicable to sonic speed theory is in agreement
with that derived from more conventional analysis.

Lifting-surface solutions at M, = 1l.— It should be mentioned at

this point that Robinson and Young (reference 19) have shown by means
of linearized theory that supersonic triangular wings and subsonic
elliptical wings of the same aspect ratio have values of lift~curve
slope which approach a common and finite limit as My = 1. The
present sectlon of this report is concermed only with the study of
lifting surfaces at a fixed sonic velocity but the results to be
obtained are in agreement with the limiting values of reference 19.

A further application of the results in this section can be
mede to the case of very low aspect ratio wings at arbitrary Mach
numbers. This viewpoint of the theory was first presented by
R. T. Jones in reference 20 and applied to triangular wings while
in reference 21 extension was made to include pointed wings on
slender bodies of revolution. This duality of interpretation, that
is, to all aspect ratios at sonic speed or low aspect ratios at all
Mach nunmbers, applies to all solutions of three—dimensional problems
obtained from equation (13). In the subsequent analysis, attention
will be confined to swept—back plan forms of lifting surfaces with
pointed vertices and thus doublets will be used exclusively.

In application, the two types of boundary conditions to be
considered are as follows:

1. Boundery-valye problem of the first kind, loading specified.—

It is given that Aug, = u,~u; = 0 over the xy plane except for
the region occupied by the wing where 2u, = ~2u; = Au, = £(x,y),
the function being determined by the specified loeding. Over all
of the xy plane, the imposed conditions are vy = 0.
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2. Boundary—value problem of the second kind, surface specified.—

Over the =xy plane, the imposed conditions are Aw, = 0 every—
vhere and, except for the region occupied by the wing, Aug = 0.
Over the region occupied by the wing wo = wy = w1 = £(x,y) wkere
f£(x,y) 1is determined by known cember, twist, and angle of incidence.
(The delta notation again indicates the jump in the value of the

variable at the 2z = 0 plane.
Subscripts u and 1 indi— y
cate conditions on the upper y =b, (x)
and lower surface, respec— ! y=b,(x)
tively, of this plane.) 2

The nature of the differential
equation shows that the value of ¢
is a consequence of boundary condi-—
tions along lateral strips. If, as
in figure 14, the two leading vX
edges are given by the expressions
¥y = bi(x) eand y =ba(x), the
velocity potential is express—

ible in the form Figure 1l4.— Swept-back plen
form with curved trailing
edge.
bz Ap (x,y1)dya
o(x,5,2) = -gf;f Q- (59)
by (yy1)+z

If the boundary—value problem is one of the first kind, the
general expression for ¢ follows from a direct integration after
noting that

Y
8o, (x3) = [t (23003 (60)
b1

Since, moreover, loed coefficient Ap/q is related to Au, by means
of the equation

Ap _ 284y
q v

it follows that the velocity potential ©® can be found for any
prescribed load distribution of a given plan form. The value of
vertical induced velocity, evaluated at =z = O, then suffices to
calculate the twist and angle of attack of the wing.




36

NACA TN No. 182k

If the boundary—value problem is one of the second kind, the
vertical induced velocity is given on the wing and the load distri-—
bution is to be found. In this case the use of equation (59) leads
to the consideration of an integral equation. Since, however, this
integral equation is a common one in aerodynamic theory, certain

established methods may be applied to it.

After noting that AQ x,y) = O at the leading edge, integra—

tion by parts and introduction of the relation

A
Av. = __&

°© 9y

yields for perturbation potential the expression

T
= = AYo(x,yl)arc tan
1

Ty
-3

aya

In the 1imit as 2z approaches zero the dserivative of
to 2z reduces to the form

v = __1_fb Av(x,51)dys
~h N

(61)

® with respect

(62)

For a given distribution of w, over the plan form of the wing,

(e]

equation (62) represents an integral equation to be solved for
Avo(x,y) subject only to the condition that the Kutta—Joukowski

condition is satisfied at all subsonic -trailing edges.

is determined it follows that °

p
AQ, =f—-b AV, (X,51)d71

op _ 2 0%
a V, ox

Once Av,(x,y)

(63)

(61)

In the present report the solution to the wing plan form shown
in figure 15 will be presented. The value of A%, which satisfies

i
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equation (62) is, in region 1
AP = —2w, X2 ten® 652 (65)
end in region 2
AQ = —2w, x tan e[ E(¥o,k,) —k,'2 F(mb’o,ko)] (66)
where E and F are defined in the appendix and where
2 t 2
¥, = arc sin/ - 2L ST (67)
X< tan® 6-a;
O S k.2
ko x tan @ '”/l ko (68)
The equetion ¥y = ai(x) of .
the trailing edge for which Regions y
equation (66) is valid is é
given by the formuila Ai op °
- y=X tan8
ko' 2
ay = ST (69) I ‘|
o¥o" Ko y=a,(x) "—fos ’
vhich expresses a; expli—
cltly as a function of e

az
<m—5 . This partic—
ular choice of trailing—

edge shape was used to
simplify the analysis. The

X

Figure 15.— Dimensions and regions
used in discussion of swept-back

wings.

resulting plan form approaches a constant—chord wing as the span
increases. The variation of a; with =x is given in figure 16; and
figure 17 shows the relation between aspect ratio and span.

The loading coefficient is given in the two regions (defined in

fig. 15) as follows:
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_a
cotan8
8
IoO .2 4 6 8 1.0
) ™~ 7 ,
\\ A /
1.2 tan@ ¢
X N 6 //
Co AN /
14 S A
N 5 7
\\ /]
16 . 4 d
\\ .10 14 I8 22 26
18 . _59_
. Co tané

Figure 16.— Graph showing trailing—  Figure 17.— Relation between

edge position of the swept-back aspect ratlio and wing semi—
Wwings studied. span.
Region 1
Ap _  hx tan® @ (70)

R ,/xg tan® 6—y=

Region 2
o
, = - .
% = ll- ten 6 [E(‘yo’ko) + X tZJJ. e x2 tan2le_y2 - 'K—‘co) F(\yo’ko)} (71)

This load distribution is shown in figure 18 for a trianguler and a
swept—back wing. It is seen that the loading at sonic speed bears
a close resemblance to those found at higher Mach numbers. TIwo
similarities of note are the discontinuity in the pressure gradient
at the Mach wave originating from the trailing edge of the root
chord and the satisfying of the Rutta condition only where the
trailing edge is subsonic. The 1ift and induced drag coefficients
are given, respectively, by
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Cy, T A 52
a ten 6 2 tan 6 Bo"
Figure 18. Pressure distributions for triangular and swept—
back wings at My = 1.
and
CDj_ __A ‘:ksaﬂ _ E:.a""kSzKai :I (73)
o tan 6 tan 6L L (8o/cq ten 6)
where

t 2
ksf = EQ' =,,/l—-k3

(o]

These coefficients are plotted as a function of A/tem 6 1in figure 19.
It is shown that the values of ()D:L/oz.2 ten 8 and CLi/a, tan 8 for

finite aspect ratio swept-back wings are always less than the corre-
sponding values for the triangular wing (A/tan 6 = 4).

e e R
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When the span of the swept—back wing becomes very large, the
slope of the trailing edge
approaches asymptotically the

8 Gy slope of the leading edge. It

Zatan8 follows that for infinitely :

{// large aspect ratio the limiting
. 6 : ? value of the load distribution
on the outboard sections should
Gﬁ approach the value given by

I /—rf——e simple sweep theory for an
~—] 1 infinitely long swept—back

2 I — lifting surface with constant
chord. This result is, in
fact, a consequence of equa~

0] tion (71).

Figure 19.— Variation of 1ift
and drag with aspect ratio for
a swept-back wing at M, = 1.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronsutics,
Moffett Field, Calif.

APPENDIX

LIST OF IMPORTANT SYMBOLS

a1 ¥ coordinate of trailing edge, ¥y = ai(x)
a, free—stream speed of sound

a local speed of sound

a¥ | critical speed of sound

(span)® ]

A aspect ratio
pe [ (wing area)
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C(u)

e e e e A e P —— et s e T a

Al

u
Fresnel's cosine integral <f cos -g- x2 dx >
. (o]

wing root chord

1ift
1ift coefficient ]
[q(wing area)
acr,
do,

Indicial 1ift coefficient -

D
Induced dreag cosfficient [ i :I
q(wing area)
drag
induced drag

X 2
error function of XQ,E— f o d)\.)
X
o

yn
elliptic integral of second kind ( f  1-k ®sin®p dcp)
o

E(S> k) .
n
elliptic integral of first kind< f 4 >
o N 1%k 2sin®p
F(-g,kn)

elliptic integrals with moduli k',
modulus of elliptic functions

1-%2,

length of body



ko

M,

Na(wt,v)

a5

TNACA TN No. 182h4

v
free—stream Mach number <;9-
0

fﬁ [cos z° ¢(ot—=") — sin £s(ot—=") | ax
ﬁ .

f‘/“’_t [cos x2S(ot—x2) + sin x% C(wt—=2) | dx
= i

loading coefficient (pressure on lower surface
minus pressure on upper surface divided by free—

stream dynamic pressure)

free—stream dynamic pressure < % Py V02 >

polar coordinates in yz plane (y = r cos 8, z = r sinf)
u Tt
Fresnel's sine Iintegral f sin 5 x2 dx
o

operational equivalent of ©

wing semispan

time
aot !

meaximm distance measured parallel to y axis from
x axis to trailing edge (fig. 15)

perturbation velocity components in x,y,z directions,
respectively

local velocity

free—stream velocity
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Ve radiasl component of perturbation velocity
X, V52 Cartesian coordinates
a angle of attack in radiams
B VARE
y ratio of specific heats, for air 7 = 1.k
APy AU ;AW discontinuity in component in 2z = 0 plane
e semivertex angle of swept back wing
v OCo
2
Po free—stream density
) total velocity potential
Q perturbation velocity potential
! impressed frequency (reference to true time)
® o!
8o
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